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Abstract. We study the self-tuning of general brane junctions and brane networks on 6-dimensional space-
time. For general brane junctions, there may exist one fine-tuning among the brane tensions. For the brane
networks, similar to the 5-dimensional self-tuning brane models, the brane tensions can be set arbitrarily
and there exists a singularity for the metric and bulk scalar. If we want to regularize the singularity, we
will introduce fine-tuning among the brane tensions. In addition, because the 4-dimensional cosmological
constant we observe may be positive and very small, we discuss the brane network with de Sitter brane
intersections by introducing a bulk scalar.

1 Introduction

There are some unattractive features in the standard
model (SM) which may imply new physics, although the
SM is very successful as seen from the experiments at LEP
and Tevatron. One of these problems is that the gauge
interactions and gravitational interaction are not unified.
Another is the gauge hierarchy problem. As we know, sev-
eral solutions to the gauge hierarchy problem have been
proposed: technicolor and compositeness, which lacks cal-
culability; weak-scale supersymmetry which was the lead-
ing candidate for the extension of the standard model sev-
eral years ago; and conformality, which is similar in spirit
to supersymmetry: one just replaces one symmetry (su-
persymmetry) with another (conformal symmetry) above
the TeV scale, and both approaches predict new physics
at the TeV scale [1].

About three years ago, it was suggested that large
compactified extra dimensions may also be a solution to
the gauge hierarchy problem [2], because a low (4 + n)-
dimensional Planck scale (MX) may result in a large 4-
dimensional Planck scale (MPl) due to the large physical
volume (V n

p ) of the extra dimensions:M
2
Pl =M2+n

X V n
p . In

addition, Randall and Sundrum [3] proposed another sce-
nario: that the extra dimension is an orbifold, and the size
of the extra dimension is not large but the 4-dimensional
mass scale in the standard model is suppressed by an expo-
nential factor from the 5-dimensional mass scale due to the
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exponential warp factor. Furthermore, they suggested that
the fifth dimension might be coordinate non-compact [4],
and there may exist only one brane with a positive tension
at the origin; however, there still exists the gauge hierarchy
problem. The remarkable aspect of the second scenario is
that it gives rise to a localized graviton field. Afterwards,
a lot of 5-dimensional models with 3-branes were built [5,
6], and models with co-dimension one brane(s) were con-
structed on a 6-dimensional and higher-dimensional space-
time [7–11].

In the above model building, all the models with a
warp factor in the metric have a negative bulk cosmologi-
cal constant. However, in string theory, it is natural to take
the bulk cosmological constant to be zero since the tree-
level vacuum energy in the generic critical closed string
compactifications (supersymmetric or not) vanishes. And
a zero bulk cosmological constant is natural in the scenario
in which the bulk is supersymmetric (though the brane
need not be), or the quantum corrections to the bulk are
small enough to be neglected in a controlled expansion.
So, how to construct models with zero bulk cosmological
constant is an interesting question in the model building,
because such kinds of models are still interesting if the
bulk corrections to the bulk cosmological constant Λ were
very small, which can happen for instance if the super-
symmetry breaking is localized in a small neighborhood
of the branes, or if the supersymmetry breaking scale in
the bulk is small enough. Moreover, if all the gauge fields
and matter fields were confined to the branes, the quan-
tum corrections of these fields to the brane tensions might
not affect the models with Λ = 0.

One scenario is that we introduce not only a space-
like extra dimension, but also a time-like extra dimension
[10]. The good aspect of this approach is that there is



474 J. Jiang, T. Li: Self-tuning and de Sitter brane intersections in 6-dimensional brane models

no singularity; however, there exists fine-tuning and one
might have the problems arising from the time-like ex-
tra dimension: unitarity and causality. Another scenario
was proposed where a scalar φ, which does not have a
bulk potential, is introduced [12]. In the second scenario,
φ becomes singular at a finite distance along the extra
dimension and the warp factor in the metric vanishes at
the singularity. The good aspect of this approach is that
the brane tension can be set arbitrarily. However, the Z2
symmetric and 4-dimensional Poincaré invariant solution
is unstable under the bulk quantum corrections, and any
procedure which regularizes the singularity will introduce
the fine-tuning which the self-tuning is supposed to avoid
[13]. Furthermore, a simple no-go theorem [14] relating
the self-tuning solutions to the cosmological constant for
observers on the brane, which relies on a singularity in an
extra dimension, shows that it is impossible to shield the
singularity from the brane by a horizon [15], unless the
positive energy condition is violated in the bulk or on the
brane, or the 3-brane has a spatial curvature.

In this paper, we would like to discuss the self-tuning
of general brane junctions [11], a simple brane intersec-
tion, and a brane network [9] on a 6-dimensional space-
time by introducing a bulk scalar without bulk potential.
For general brane junction models, there may exist one
fine-tuning among the total brane tensions1. However, in
the brane intersection models or brane networks where
the branes are co-dimension one hypersurfaces, the brane
tensions can be set arbitrarily, because the constraint in
the brane junctions is satisfied automatically. Similar to
the 5-dimensional brane models, there exists the singu-
larity for the metric and bulk scalar in the self-tuning of
brane networks. If we want to regularize the singularity, for
example, we require the extra dimensions to be compact
and introduce cut-off branes; then we will have fine-tuning
among the brane tensions.

In addition, as we know, our universe may have a very
small positive cosmological constant, so we discuss a brane
network with de Sitter brane intersections. Suppose we
have n space-like extra dimensions whose coordinates are
yi, where i = 1, 2, ..., n, and the branes are co-dimension
one hypersurfaces which are determined by the algebraic
equations yi = r, where r is a real number. If one assumed
the metric

ds2 = Ω−2

(
−dt2 +

3∑
i=1

e2Htdxidxi +
n∑

i=1

dyi2

)
, (1)

it is not difficult to show that there does not exist a solu-
tion for n > 1 2, i.e., we do not have such a kind of brane
networks with de Sitter brane intersections. In order to
obtain the solutions, we introduce a bulk scalar which has
a bulk potential; in other words, we add one degree of
freedom to the system. We present a 6-dimensional brane
network with three (two) 4-branes whose extra dimension

1 Although it is not essentially self-tuning if there was one
fine-tuning among the brane tensions, we still call it “self-
tuning”, which means that the bulk potential for φ is zero

2 For the n = 1 solution, for example, see [16]

Fig. 1. A junction (3-brane) of k semi-infinite 4-branes. The
angular positions of branes are measured from the y-axis and
the brane tensions are denoted by Vi

coordinates are y and z, one along the y direction and
two (one) along the z direction. The solution has no sin-
gularity and all the brane tensions have similar forms in
terms of the scalar. Similarly, one can also discuss the gen-
eral brane networks with de Sitter or anti-de Sitter brane
intersections.

2 Self-tuning of the brane junctions
and networks

First, let us discuss the self-tuning of the general brane
junctions. The set-up is given in Fig. 1; we use the met-
ric with signature (−,+,+,+,+,+). The 6-dimensional
gravitational action describing the system is

S =
1
2κ2

∫
d4xdydz

√−g(R− ∂Aφ∂
Aφ)

−
k∑

i=1

∫
d4xdydz

√
−g(i)Vi(φ)δ(�ni · �w)θ(�li · �w), (2)

where κ2 = M−4
X is the 6-dimensional coupling constant

of gravity, MX is the 6-dimensional Planck scale, and R
is the curvature scalar. The vectors

�ni = (− sinαi, cosαi), �li = (cosαi, sinαi)
and �w = (y, z) (3)

are defined so that δ(�ni · �w) is the line in the y–z plane
which contains the ith brane and θ(�li · �w) serves to cut the
irrelevant half of the line. Thus, δ(�ni · �w)θ(�li · �w) defines the
location of the ith semi-infinite brane. The 5-dimensional
metric on the ith half-brane is

g
(i)
AB ≡ gAB(z = ytanαi). (4)

Assuming the metric to be conformally flat, it can be writ-
ten as

ds2 = Ω−2(ηµνdxµdxν + dy2 + dz2), (5)

where Ω ≡ Ω(y, z). Then the Einstein equations are

GAB = κ2TAB = ∂Aφ∂Bφ− 1
2
gAB(∂φ)2

− κ2Ω−1
k∑

i=1

Γ
(i)
ABVi(φ)δ(�ni · �w)θ(�li · �w), (6)
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where

Γ
(i)
AB =




−1
1

1
1

cos2 αi sinαi cosαi

sinαi cosαi sin2 αi


 .

(7)

These equations can be put in a form amenable to easy
solution by transforming to the conformally related space-
time,

g̃AB = Ω2gAB . (8)

In six dimensions the Einstein tensors in the two met-
rics are related by

GAB = G̃AB + 4

[
Ω−1∇̃A∇̃BΩ

+ g̃AB

(
−Ω−1∇̃2Ω +

5
2
Ω−2(∇̃Ω)2

)]
, (9)

where the covariant derivatives ∇̃ are evaluated with re-
spect to the metric g̃. Since the metric is conformally flat,
the covariant derivatives are identical to ordinary deriva-
tives and G̃AB = 0. Using the above form of the Einstein
tensor, the Einstein equations are

4
∂2Ω

∂y2 = Ω
(∂φ
∂y

)2

+ κ2
k∑

i=1

Vi(φ) sin2 αiδ(�ni · �w)θ(�li · �w), (10)

4
∂2Ω

∂z2 = Ω
(∂φ
∂z

)2

+ κ2
k∑

i=1

Vi(φ) cos2 αiδ(�ni · �w)θ(�li · �w), (11)

20
(
∂Ω

∂y

)2

+ 20
(
∂Ω

∂z

)2

= Ω2
(∂φ
∂y

)2
+Ω2

(∂φ
∂z

)2
, (12)

4
∂2Ω

∂y∂z
= Ω

∂φ

∂y

∂φ

∂z
(13)

− κ2
k∑

i=1

sinαi cosαiVi(φ)δ(�ni · �w)θ(�li · �w),

which must be supplemented with the equation of motion
of the scalar field φ,

Ω
∂2φ

∂y2 +Ω
∂2φ

∂z2 − 4
∂Ω

∂y

∂φ

∂y
− 4

∂Ω

∂z

∂φ

∂z

= κ2
k∑

i=1

∂Vi

∂φ
δ(�ni · �w)θ(�li · �w). (14)

Fig. 2. A simple brane intersection formed by two infinite
4-branes intersecting at an angle α

The solution to (10)–(14) is

Ω =

{
k∑

i=1

(�ri · �w)θ(�ni · �w)θ(−�ni+1 · �w) + C

}−1/4

, (15)

φ = −2
√
5 lnΩ, (16)

where �nk+1 ≡ �n1 and �ri = (pi, qi) are the integration
constants which are not all independent of each other.
The brane tensions are

κ2Vi(φ) =
pi − pi−1

sinαi
e−(

√
5/2)φ for sinαi �= 0, (17)

or

κ2Vi(φ) =
qi−1 − qi

cosαi
e−(

√
5/2)φ for cosαi �= 0. (18)

Of course, sinαi = 0 and cosαi = 0 imply pi = pi−1
and qi = qi−1, respectively. We find that there may exist
one fine-tuning among the total brane tensions from (17)
and (18), which will be automatically satisfied when we
consider the self-tuning of brane intersections or brane
networks.

Second, we present a simple brane intersection model
which is a special case of the above solution. Suppose that
we have two 4-branes, which are determined by the equa-
tions y = 0 and y sinα = z cosα, respectively. The set-up
is given at Fig. 2. The action and Einstein equation can
be obtained from the above general discussions, so we will
not repeat them here. We just give the solution where the
conformal factor and φ are

Ω =
(
a|z|+ b|y sinα− z cosα|+ cy + dz + e

)−1/4
, (19)

φ = −2
√
5 ln

(
a|z|+ b|y sinα− z cosα|

+ cy + dz + e
)−1/4

, (20)

and the brane tensions are

κ2V1(φ) = −2ae−(
√

5/2)φ,

κ2V2(φ) = −2be−(
√

5/2)φ. (21)

We also assume e > 0. If a < 0 and b < 0, then two branes
have positive tensions and the brane tensions can be set ar-
bitrarily. However, φ will have a singularity on some lines
and the conformal factor Ω−1 will vanish there. The sin-
gular points form co-dimension one curves, and can be cal-
culated easily. For example, assuming c = d = 0, there are
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four singular points along the two branes: (y = −e/a, z =
0), (y = e/a, z = 0), (y = −e/b cosα, z = −e/b sinα), and
(y = e/b cosα, z = e/b sinα), we can draw four straight
lines from (y = −e/a, z = 0) and (y = e/a, z = 0) to
(y = −e/b cosα, z = −e/b sinα) and (y = e/b cosα, z =
e/b sinα). On those four lines, φ is singular and Ω−1 is
zero.

Third, we discuss a brane network with four 4-branes
on the extra space manifold R1/Z2 ×R1/Z2. Two branes
along the y direction are located at y = 0 and y = y1,
respectively, and two branes along the z direction are lo-
cated at z = 0 and z = z1, respectively. The set-up is
given in Fig. 3. The action for this model is

S = SBulk + SBranes, (22)

where

SBulk =
1
2κ2

∫
d4xdydz

√−g(R− ∂Aφ∂
Aφ), (23)

SBrane = −
∫
d4xdydz(

√
−g(1)V1(φ)δ(y)

+
√

−g(3)V3(φ)δ(y − y1))

−
∫
d4xdydz(

√
−g(2)V2(φ)δ(z)

+
√

−g(4)V4(φ)δ(z − z1)), (24)

where g(i) for i = 1, 2, 3, 4 is the metric on the ith brane,
which can be obtained by restriction. The detailed calcu-
lation is similar, so we just give the result. Assuming the
conformal metric

ds2 = Ω−2(ηµνdxµdxν + dy2 + dz2), (25)

we obtain the solution for the conformal factor and φ:

Ω =
(
a|y − y1|+ b|z − z1|+ cy + dz + e

)−1/4
, (26)

φ = −2
√
5 ln

(
a|y − y1|+ b|z − z1|+ cy + dz + e

)−1/4
,

(27)

and the brane tensions are

κ2V1(φ) = −(c− a)e−(
√

5/2)φ,

κ2V2(φ) = −(d− b)e−(
√

5/2)φ, (28)

κ2V3(φ) = −2ae−(
√

5/2)φ,

κ2V4(φ) = −2be−(
√

5/2)φ. (29)

So, if c > a, d > b and e > 0, the metric and φ do
not have a singularity or vanish at finite distance from
the origin, but they are divergent at infinity. The brane
tensions can be set arbitrarily, for instance, if a < 0 and
b < 0, the brane tensions V3 and V4 are positive, and the
brane tensions V1 and V2 are negative. In order to avoid
the divergence in the metric and φ, we can introduce two
cut-off 4-branes: V5 which is located at y = y2, and V6
which is located at z = z2, where y2 > y1 and z2 > z1. So,

Fig. 3. A network of four 4-branes on the 6-dimensional space-
time M4 × R1/Z2 × R1/Z2

the extra space manifold is S1/Z2 × S1/Z2. Because the
tensions for the cut-off 4-branes are

κ2V5(φ) = (c+ a)e−(
√

5/2)φ,

κ2V6(φ) = (d+ b)e−(
√

5/2)φ, (30)

we will have fine-tuning among the brane tensions, which
is similar to the 5-dimensional self-tuning models [13].

3 Brane network
with de Sitter brane intersection

Because the 4-dimensional cosmological constant we ob-
serve is positive although it is very small, we would like
to discuss the brane network with de Sitter brane inter-
sections. In order to have the solutions, we introduce one
bulk scalar φ whose bulk potential does not vanish. As-
sume that we have three 4-branes, one along the y direc-
tion at y = 0, two along the z direction at z = 0 and
z = z1. The set-up is given in Fig. 4b. The metrics on the
branes can be obtained by the restriction

g
(1)
AB ≡ gAB(y = 0), where A,B �= y, (31)

g
(2)
AB ≡ gAB(z = 0), where A,B �= z, (32)

g
(3)
AB ≡ gAB(z = z1), where A,B �= z. (33)

The action for this system is

S = SBulk + SBranes, (34)

where

SBulk =
∫
d4xdydz

√−g
(
1
2
R− 1

2
∂Aφ∂

Aφ− Λ(φ)
)
,

(35)

SBrane = −
∫
d4xdydz

√
−g(1)V1(φ)δ(y)

−
∫
d4xdydz(

√
−g(2)V2(φ)δ(z)

+
√

−g(3)V3(φ)δ(z − z1)). (36)
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Fig. 4. a Two 4-branes with de Sitter brane intersection;
b three 4-branes with two de Sitter brane intersections

With the following conformal metric:

ds2 = Ω−2

(
−dt2 +

3∑
i=1

e2Htdxidxi + dy2 + dz2

)
, (37)

we obtain the Einstein equations

4
∂2Ω

∂y2 = Ω
(∂φ
∂y

)2
+ V1(φ)δ(y) + 3H2Ω, (38)

4
∂2Ω

∂z2 = Ω
(∂φ
∂z

)2
+ V2(φ)δ(z) + V3(φ)δ(z − z1)

+ 3H2Ω, (39)

20
(
∂Ω

∂y

)2

+ 20
(
∂Ω

∂z

)2

= Ω2
(∂φ
∂y

)2
+Ω2

(∂φ
∂z

)2

− 2Λ(φ) + 18H2Ω2, (40)

4
∂2Ω

∂y∂z
= Ω

∂φ

∂y

∂φ

∂z
, (41)

and the equation of motion for φ,

Ω2 ∂
2φ

∂z2 +Ω2 ∂
2φ

∂z2 = +4Ω
∂Ω

∂y

∂φ

∂y
+ 4Ω

∂Ω

∂z

∂φ

∂z

+ Ω
∂V1(φ)
∂φ

δ(y) +Ω
∂V2(φ)
∂φ

δ(z)

+ Ω
∂V3(φ)
∂φ

δ(z − z1) +
∂Λ(φ)
∂φ

. (42)

If V3(φ) = 0, i.e., there are two 4-branes and the set-up
is given in Fig. 4a. The conformal factor and φ are

Ω = exp
{
3
8
H2[(|y|+ c1)2 + (|z|+ c2)2 + c3]

}
, (43)

φ =
3
4
H2[(|y|+ c1)2 + (|z|+ c2)2 + c3], (44)

the bulk potential for φ is

Λ(φ) = 9
(
1 +

1
2
H2c3

)
H2eφ − 6H2φeφ, (45)

and the brane tensions are

V1(φ) = 6eφ/2, V2(φ) = 6eφ/2. (46)

So both branes have positive tensions.

Now, we consider the case V3(φ) �= 0, because we need
at least three 4-branes to solve the gauge hierarchy prob-
lem. The conformal factor and φ are

Ω = exp
{
3
8
H2[(|y|+ c1)2

+ (|z| − |z − z1| − z + c2)2 + c3]
}
, (47)

φ =
3
4
H2
[
(|y|+ c1)2

+ (|z| − |z − z1| − z + c2)2 + c3

]
; (48)

the bulk potential for φ is

Λ(φ) = 9
(
1 +

1
2
H2c3

)
H2eφ − 6H2φeφ, (49)

and the brane tensions are

V1(φ) = 6H2eφ/2, V2(φ) = 6H2eφ/2, (50)

V3(φ) = −6H2eφ/2. (51)

Thus, the third brane has negative tension. By the way,
all the brane tensions have similar forms in terms of the
scalar.

Similarly, we can discuss the general brane networks
with de Sitter or anti-de Sitter brane intersections.

4 Conclusion

We study the self-tuning of general brane junctions and
brane networks on the 6-dimensional space-time. For the
general brane junctions, there may exist one fine-tuning
among the brane tensions. For the brane networks, similar
to the 5-dimensional self-tuning brane models, the brane
tensions can be set arbitrarily and there exists a singular-
ity for the metric and bulk scalar. If we want to regularize
the singularity, we will introduce the fine-tuning among
the brane tensions. In addition, because the 4-dimensional
cosmological constant we observe may be positive and very
small, we discuss the brane network with de Sitter brane
intersections by introducing a bulk scalar.
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